The geometric average size of Selmer groups over function fields

نویسندگان

چکیده

We show, in the large $q$ limit, that average size of $n$-Selmer groups elliptic curves bounded height over $\mathbb F_q(t)$ is sum divisors $n$. As a corollary, again we deduce $100\%$ have rank $0$ or $1$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Average size of 2-Selmer groups of elliptic curves over function fields

Employing a geometric setting inspired by the proof of the Fundamental Lemma, we study some counting problems related to the average size of 2-Selmer groups and hence obtain an estimate for it.

متن کامل

Large Selmer groups over number fields

Let p be a prime number and M a quadratic number field, M , Q( √ p) if p ≡ 1 mod 4. We will prove that for any positive integer d there exists a Galois extension F/Q with Galois group D2p and an elliptic curve E/Q such that F contains M and the p-Selmer group of E/F has size at least pd.

متن کامل

Average Size of 2-selmer Groups of Elliptic Curves, I

In this paper, we study a class of elliptic curves over Q with Qtorsion group Z2×Z2, and prove that the average order of the 2-Selmer groups is bounded.

متن کامل

Average Size of 2-selmer Groups of Elliptic Curves, Ii

In this paper, we consider the average order of the 2-Selmer groups of elliptic curves over Q given by the equation E : y2 = x(x + a)(x + b), where a and b are integers. We show that, with a being fixed, the average order of the 2-Selmer groups of such curves closely depends on a. More exactly, we show that the average order is bounded if |a| is not a square and unbounded if |a| is the square o...

متن کامل

Selmer groups and Mordell-Weil groups of elliptic curves over towers of function fields

In [12] and [13], Silverman discusses the problem of bounding the Mordell-Weil ranks of elliptic curves over towers of function fields. We first prove generalizations of the theorems of those two papers by a different method, allowing non-abelian Galois groups and removing the dependence on Tate’s conjectures. We then prove some theorems about the growth of Mordell-Weil ranks in towers of funct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algebra & Number Theory

سال: 2021

ISSN: ['1944-7833', '1937-0652']

DOI: https://doi.org/10.2140/ant.2021.15.673